
J. Fluid Mech. (1998), vol. 367, pp. 221–253. Printed in the United Kingdom

c© 1998 Cambridge University Press

221
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The existing model equations governing the accelerated motion of a spherical particle
are examined and their predictions compared with the results of the numerical
solution of the full Navier–Stokes equations for unsteady, axisymmetric flow around
a freely moving sphere injected into an initially stationary or oscillating fluid. The
comparison for the particle Reynolds number in the range of 2 to 150 and the particle
to fluid density ratio in the range of 5 to 200 indicates that the existing equations
deviate considerably from the Navier–Stokes equations. As a result, we propose a
new equation for the particle motion and demonstrate its superiority to the existing
equations over a range of Reynolds numbers (from 2 to 150) and particle to fluid
density ratios (from 5 to 200). The history terms in the new equation account for
the effects of large relative acceleration or deceleration of the particle and the initial
relative velocity between the fluid and the particle. We also examine the temporal
structure of the near wake of the unsteady, axisymmetric flow around a freely
moving sphere injected into an initially stagnant fluid. As the sphere decelerates, the
recirculation eddy size grows monotonically even though the instantaneous Reynolds
number of the sphere decreases.

1. Introduction
Accurate prediction of particle (or droplet) dispersion is important in many tur-

bulent two-phase flows such as spray combustion and atmospheric dispersion of
pollutants. Since a general analytical solution of the Navier–Stokes equations for the
unsteady three-dimensional flow around a sphere is not available, only a numerical
solution of these equations can provide accurate information about the flow field.
The forces on the particle can then be computed by integrating the normal and shear
stresses around the particle, and Newton’s law applied to obtain the acceleration of
the particle. However, since these equations are unsteady and three-dimensional, they
require excessive computing time. It is not possible to use this method to predict
the simultaneous motion of many particles (order of 106 particles cm−3) in a typical
turbulent two-phase flow with the present and foreseeable computing capabilities.

Several equations accounting for the unsteadiness of the particle motion have been
developed wherein a superposition of the steady drag and the unsteady (history)
drag is used to obtain the forces on the particle. The available particle equations are
reviewed next.

Basset (1888), Boussinesq (1903), and Oseen (1927) (hereinafter referred to as
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BBO) studied the unsteady rectilinear motion of a sphere in a stagnant incompress-
ible, viscous fluid. They solved the Navier–Stokes equations for a creeping flow by
neglecting the advective acceleration terms and derived the following equation for the
acceleration of the sphere:

mp
dv

dt
= −6πaµfv − 1

2
mf

dv

dt
− 6a2(πµfρf)

1/2

∫ t

0

dv/dτ

(t− τ)1/2
dτ+ (mp − mf)g, (1.1)

where v is the sphere velocity, a is the sphere radius, mp is the mass of the sphere,
and mf is the mass of the fluid displaced by the sphere.

Maxey & Riley (1983) re-derived from first principles the following equation for
the motion of a sphere in a non-uniform creeping flow:

mp
dv

dt
= 6πaµf(u− v) + 1

2
mf

d(u− v)
dt

+ mf
Du

dt

+6a2(πµfρf)
1/2

∫ t

0

d(u− v)/dτ
(t− τ)1/2

dτ+ (mp − mf)g, (1.2)

where the Faxén forces are not shown here, and u, v are the velocity vectors of the
carrier fluid and the sphere, respectively.

A widely used equation (e.g. Berlemont, Desjonqueres & Gouesbet 1990) for a
noncreeping flow is obtained by empirically modifying the first right-hand side term
in equation (1.2):

mp
dv

dt
= 1

2
CDstdπa

2ρf | u− v | (u− v) + 1
2
mf

d(u− v)
dt

+ mf
Du

dt

+6a2(πµfρf)
1/2

∫ t

0

d(u− v)/dτ
(t− τ)1/2

dτ+ (mp − mf)g, (1.3)

where CDstd is the drag coefficient from the (steady) standard drag curve.
A simpler form of equation (1.3) is obtained by neglecting the second, third, and

fourth terms on the right-hand side, resulting in

mp
dv

dt
= 1

2
CDstdπa

2ρf | u− v | (u− v) + (mp − mf)g. (1.4)

Equation (1.4) is used in many practical engineering calculations assuming particles
with large response time relative to the time scale of the flow. A detailed discussion
of the conditions under which equation (1.4) is valid will be presented in § 3.2.

Odar & Hamilton (1964, hereinafter referred as to OH) and Odar (1966) studied
experimentally the force on a guided sphere rectilinearly oscillating in an otherwise
stagnant fluid for 0 6 Re 6 62. They proposed an equation for the motion of a sphere
with finite Reynolds number based on their experimental study as

mp
dv

dt
= − 1

2
CDstdπa

2ρf | v | v − Ca 1
2
mf

dv

dt
− Ch 6a2(πµfρf)

1/2

∫ t

0

dv/dτ

(t− τ)1/2
dτ (1.5)

with Ca and Ch obtained experimentally and given by

Ca = 2.1− 0.132M2
A1/(1 + 0.12M2

A1),

Ch = 0.48 + 0.52M3
A1/(1 +MA1)

3,

where MA1 is the dimensionless relative acceleration defined by

MA1 =
2a

|u− v|2

∣∣∣∣d|u− v|dt

∣∣∣∣ . (1.6)
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MA1 is hereafter called the acceleration number. Note that Ca → 1 and Ch → 1 as
MA1 →∞.

More recently, the numerical studies by Rivero, Magnaudet & Fabre (1991), Mei,
Lawrence & Adrian (1991), and Chang & Maxey (1994, 1995) show that the added
mass term for finite-Reynolds-number flows is the same as predicted by creeping flow
and potential flow theory over a wide range of the dimensionless relative acceleration
(i.e. Ca is unity).

Mei et al. (1991) studied an unsteady flow over a stationary sphere with small
fluctuations in the free-stream velocity at finite Reynolds number (0.1 6 Re 6 40)
using a finite-difference method and found that the Basset-force term in the equation
of particle motion should have a kernel which must decay much faster than (t−τ)−1/2

at large time. Mei & Adrian (1992, hereinafter denoted as MA) and Mei (1994)
considered the same problem as Mei et al. (1991) but for Slω � Re � 1 using
a matched asymptotic expansion, where Slω is the Strouhal number based on the
angular frequency of the free stream and the sphere radius. They proposed a modified
expression for the Basset force on the bases of the analytical result at small Reynolds
number for low frequency, the numerical result at finite Reynolds number for low
frequency, and the unsteady Stokes result for high frequency. Their proposed equation
is

mp
dv

dt
= 1

2
CDstdπa

2ρf | u− v | (u− v) + 1
2
mf

(
Du

Dt
− dv

dt

)
+ mf

Du

Dt

+6πµfa

∫ t

−∞
K(t− τ, τ)d(u− v)

dτ
dτ+ (mp − mf)g (1.7a)

with the broad-frequency-range approximation for the integral kernel given by

K(t− τ, τ) =

{[
π(t− τ)νf

a2

]1/4

+

[
π

2

|u(τ)− v(τ)|3

aνff
3
H (Ret)

(t− τ)2

]1/2
}−2

, (1.7b)

where fH (Ret) = 0.75 + 0.105Ret(τ); Ret = |u(τ) − v(τ)|2a/νf . Now, equation (1.7b)
shows that the history kernel decays initially as t−1/2 but as t−2 at large time.

Maxey (1993) included the effect of the initial velocity difference between the sphere
and the carrier fluid in the particle motion equation of Maxey and Riley (1983). The
additional term is 6a2(πµfρf)

1/2(u(0)− v(0))/t1/2.
Lovalenti & Brady (1993a, b) derived an expression for the hydrodynamic force

acting on a rigid spherical particle translating with arbitrary time-dependent motion
in an unsteady flow for small Reynolds number Re < 1. They also evaluated the
corresponding expression for an arbitrary-shaped rigid particle for the case when the
time scale of variation of the particle’s slip velocity is much greater than the diffusive
scale.

The next section provides a mathematical description of the flow considered, the
governing equations, and the numerical solution procedure. In § 3, the numerical
solutions of the above equations are compared with those of the full Navier–Stokes
equations for unsteady, axisymmetric flow around a freely moving sphere injected
into an initially stationary or oscillating fluid, and a new equation for the arbitrary
rectilinear particle motion is proposed. Section 4 provides a summary of the work.
In the Appendix, it is shown that the proposed particle motion equation can predict
the low-Reynolds-number (Re < 1) flow behaviour reasonably well even though our
original emphasis was on the range 2 6 Re 6 150.
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Figure 1. Flow geometry and coordinates: inertial cylindrical coordinates Σ,X;
non-inertial cylindrical coordinates σ, x.

2. Problem statement and formulation
2.1. Flow description

Consider an unsteady, axisymmetric, incompressible, laminar flow generated by a
spherical particle injected into a constant-property Newtonian fluid oscillating with
time in the same direction as the particle motion direction shown in figure 1. The
origin of a non-rotating non-inertial reference frame is chosen at the centre of the
particle.

Three coordinate systems are used in our formulation: the inertial (fixed in space)
cylindrical coordinates (X,Σ), the non-inertial cylindrical coordinates (x, σ), and the
generalized coordinates (ξ, η). The origin of the coordinates (x, σ) coincides with the
sphere centre. The coordinate ξ is in the radial direction and η is in the angular
direction with respect to the sphere; they are used for the numerical solution of the
Navier–Stokes equations. The generalized coordinate system can be easily adapted
to two-dimensional or axisymmetric arbitrary geometries. See Kim, Elghobashi &
Sirignano (1993, 1995).

The base flow in the far field varies with time in the X-direction and is expressed as

ux(t) = f(t), (2.1a)

uσ(t) = 0. (2.1b)

The associated far pressure field can be obtained from the Navier–Stokes equations as

pb(x, t) = −ρf
df

dt
(t)X + pref, (2.2)

where pref is the reference pressure at X = 0. X is related to x as X = x + Xp,
where Xp is the distance travelled by the particle and measured from the origin of
the inertial coordinates (X,Σ).

2.2. Governing equations and boundary conditions

The momentum and continuity equations to be solved are

∇ ·W = 0, (2.3a)

ρf

(
dv

dt
+
∂W

∂t
+ ∇ ·WW

)
= −∇p+ µf∇2W , (2.3b)

where W is the local disturbed fluid velocity vector relative to the sphere, v is the
sphere velocity in the inertial reference system, and p is the local modified pressure
discounting hydrostatic pressure variations.

The governing equations (2.3a) and (2.3b) are non-dimensionalized using the sphere
radius a as the characteristic length and the initial injection velocity of the sphere
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vo = v(0) as the characteristic velocity. The non-dimensional equations are cast in
terms of the generalized coordinates (ξ, η) to treat an axisymmetric body of arbitrary
shape. The numerical integration is performed using a cubic computational mesh
with equal spacing (δξ = δη = 1). In the present study, a spherical domain is used,
and the grid reduces to an orthogonal, spherical grid. The grids are denser near
the surface of the spherical particle, and the grid density in the radial direction is
controlled by the stretching function developed by Vinokur (1983). The domain of
the flow is bounded by 1 6 ξ 6 N1, 1 6 η 6 N2, where ξ = 1 and N1 correspond,
respectively, to the sphere surface and the far-field boundary surrounding the sphere;
η = 1 and N2 denote, respectively, the positive x-axis (downstream) and the negative
x-axis (upstream).

The velocities on the sphere surface are zero due to the no-slip condition, and
the pressure condition on the sphere is obtained from the momentum equation. The
boundary conditions are

∂p

∂n
= µf

∂2Wn

∂n2
− ρf

dvn
dt
, Wx = Wσ = 0 at ξ = 1, (2.4a)

p = pb, Wx = ux − v, Wσ = 0 at ξ = N1, N2m 6 η 6 N2, (2.4b)

p = pb,
∂Wx

∂x
=
∂Wσ

∂x
= 0 at ξ = N1, 1 6 η < N2m, (2.4c)

∂p

∂η
=
∂Wx

∂η
= 0, Wσ = 0 at η = 1 and N2, (2.4d)

where Wx and Wσ are the fluid velocities relative to the sphere in the x- and σ-
directions, respectively, Wn is the fluid velocity relative to the sphere in the direction
normal to the sphere surface, and vn is the sphere velocity in the direction normal
to the sphere surface; n denotes the direction normal to the sphere surface, ∂/∂n =
(ξ2
x + ξ2

σ)
1/2∂/∂ξ, and η = N2m denotes the mid-plane between η = 1 and N2.

In order to start the numerical solution of equations (2.3a) and (2.3b), the initial
velocity field is obtained by superposing the initial velocities of the base flow and the
sphere, and by imposing the no-slip condition on the sphere surface:

po = pb, Wxo = ux(0)− v(0), Wσo = 0, except at ξ = 1, (2.5a)

po = pb, Wxo = Wσo = 0 at ξ = 1. (2.5b)

The instantaneous acceleration of the sphere is obtained by applying Newton’s
second law and including the net buoyancy force:

mp
dv

dt
= (mp − mf)g+

∫
S

T · n dS, (2.6a)

where S is the surface of the sphere, and T is the fluid stress dyad and defined in
tensor notation by

Tij = −pδij + τij = −pδij + µ

(
∂Wi

∂xj
+
∂Wj

∂xi

)
. (2.6b)

It should be noted that the net gravity force in equation (2.6a) is neglected in the
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all computations performed in the present paper since our objective is to study the
surface forces.

The governing equations (2.3a), (2.3b), and (2.6a) along with the boundary and
initial conditions are solved in an iterative manner to be explained in detail in the
next subsection, § 2.3.

The drag force on the sphere is evaluated in dimensional form as

FD =

∫
S

−pn · i dS +

∫
S

n · τ · i dS, (2.7)

where τ is the viscous stress dyad which was defined in tensor form by equation (2.6b),
and i is the unit vector in the X-direction. The non-dimensional drag coefficient is
defined as

CD =
FD

1
2
ρf | u− v |2 πa2

. (2.8)

Note that ux in equation (2.1a) will be denoted as u in the following sections.

2.3. Numerical solution

The three-dimensional numerical algorithm was developed to solve the Navier–
Stokes equations in primitive form and described in Kim et al. (1993, 1995). Here,
an axisymmetric, implicit, finite-difference algorithm has been developed to solve
simultaneously the set of discretized partial differential equations. The method is
based on an Alternating-Direction-Predictor-Corrector (ADPC) scheme to solve the
time-dependent Navier–Stokes equations. ADPC is a slight variation of Alternating-
Direction-Implicit (ADI) method and implemented easily when embedded in a large
iteration scheme. The control volume formulation is used to develop the finite-
difference equations from the governing equations with respect to the generalized
coordinates (ξ, η). An important part of solving the Navier–Stokes equations in
primitive variables is the calculation of the pressure field. In the present work, a
pressure correction equation is employed to satisfy indirectly the continuity equation.
The pressure correction equation is of the Poisson type and is solved by the Successive-
Over-Relaxation (SOR) method.

The overall solution procedure is based on a cyclic series of guess-and-correct
operations. The velocity components are first calculated from the momentum equa-
tions using the ADPC method, where the pressure field at the previous time step
is employed. This estimate improves as the overall iteration continues. The pressure
correction is calculated from the pressure correction equation using the SOR method,
and new estimates for pressure and velocities are obtained. The change in sphere
velocity is determined by computing the drag force on the sphere and applying New-
ton’s second law. This process continues until the solution converges at each time
step.

We now test the accuracy of the solution procedure by predicting the axisymmetric
flow over a solid sphere.

Here we examine the flow generated by an impulsively started solid sphere in a
quiescent fluid at two Reynolds numbers: 20 and 100. The time-dependent solution
converges asymptotically to a steady state which is in good agreement with the
available experimental data and correlations as shown in table 1. Table 1 lists the
drag coefficient as a function of the computational grid density at Reynolds numbers
20 and 100 respectively, and compares them with the correlations of Clift, Grace
& Weber (1978). Table 1 also shows the separation angle measured from the front
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N1 ×N2 ×N3 CDP CDV CD C∗D θs θ∗s

Re = 20
21× 21 1.087 1.789 2.876 — 166.3 —
31× 31 1.057 1.759 2.816 — 172.6 —
41× 41 1.042 1.733 2.775 — 180 —
51× 51† 1.038 1.725 2.763 2.74 180 180

Re = 100
21× 21 0.558 0.590 1.148 — 124.1 —
31× 31 0.533 0.581 1.114 — 125.6 —
41× 41 0.524 0.580 1.104 — 126.2 —
51× 51† 0.521 0.580 1.101 1.09 126.4 126.5

121× 121‡ 0.519 0.578 1.097 — 126.6 —

Table 1. Drag coefficient and separation angle as a function of grid density at Re = 20 and
100, where * denotes the data from the correlation of Clift et al. (1978) and Taneda (1956).
† D21 domain; ‡ D121 domain.

stagnation point as a function of grid density at Reynolds number 20 and 100, in
comparison with the data of Taneda (1956) and also with the correlations of Clift et
al. (1978). The computations were performed with four different grids, (N1 × N2) =
(21 × 21), (31 × 31), (41 × 41), and (51 × 51) in a domain with an outer boundary
located at 21 sphere radii from the sphere centre. The 51× 51 grid domain with the
outer boundary located at 21 sphere radii from the sphere centre will be referred to
hereinafter as D21. The D21 domain with a non-dimensional time step of ∆t∗ = 0.02
was used in all the computations to be discussed in the paper except where stated
otherwise.

We tested the accuracy of the solution procedure by varying the far-field boundary
condition and the location of the outer boundary. In the first test, the far-field
outflow boundary condition was changed from ∂φ/∂x = 0 (φ = Vx and Vσ) to
∂φ/∂r = 0. There was almost no effect on the drag coefficient and the near-wake
size (the separation angle and length of the recirculation eddy) at Reynolds numbers
20 and 100. Our results show that separation does not occur at Reynolds number
20. In the second test, the location of the outer boundary of the computational
domain in the downstream direction was increased from 21 to 121 sphere radii. This
domain, with 121× 121 grid points, is an ellipse-like region whose outer boundaries
extend to 21 sphere radii in the upstream, top, and bottom directions of the sphere,
and to 121 sphere radii in the downstream direction. This extended domain will
be referred to hereinafter as D121. A computation with Re = 100 was performed
with the extended domain to obtain the steady drag by relaxing a time-dependent
Navier–Stokes solution to the steady state. The difference between the drag coefficient
magnitudes from the computations with the D21 and D121 domains, normalized by
the latter, is only 0.36% (CD = 1.097 and 1.101 for the D21 and D121 domains,
respectively). The drag coefficient and the separation angle from the computation
with the D121 domain are included in table 1. Later, we will show in § 3.1 that our
unsteady drag calculations are also independent of the domain size.

In the rest of this subsection, we present the numerical procedure that was employed
to solve the equations of particle motion introduced in § 1.

The equation of particle motion is a first-order ordinary differential equation in
time and is solved by employing the predictor-corrector method. The initial velocity
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difference term derived by Maxey (1993) has a t−1/2 dependence, and the similar term
in the equation to be proposed in § 3.2 is proportional to t−1/2 as t approaches zero.
While the force due to this term is infinity at t = 0, the effect on the sphere velocity
due to this term is finite and integrable.

The history integral is singular at the upper limit. However, it can be integrated be-
cause of the square-root behaviour of the integrand when τ→ t and evaluated through
the following expression given by Chung (1982) (see also Berezin & Zhidkov 1965):∫ t

0

U̇

f(t− τ)dτ =

∫ n∆t

0

U̇

f(t− τ)dτ

=
∆t

6

n−1∑
i=1

[
U̇i−1

f(n∆t− (i− 1)∆t)
+

2(U̇i−1 + U̇i)

f(n∆t− (i− 0.5)∆t)
+

U̇i

f(n∆t− i∆t)

]
+

0.9∆t

6

[
U̇n−1

f(∆t)
+

2(U̇n−1 + U̇n)

f(0.55∆t)
+

U̇n

f(0.1∆t)

]
+

0.1∆t

2

[
8
√

2

3

U̇n

f(0.05∆t)
− 4

3

U̇n

f(0.1∆t)

]
(2.9)

where U̇ ≡ d(u− v)/dτ, and f(t− τ) ∼ (t− τ)1/2 as τ→ t.
It is noted that the negative sign of the coefficient 4/3 in the last term of equation

(2.9) is typed incorrectly as positive in the paper by Chung (1982). It can be further
noted that the published algorithm given by equation (2.9) does not give the exact
result in the special test case where U̇(t) and f(t) are each constant. Since the fractional
error is less than 1/n, this error is neglected.

3. Results and discussion
In § 3.1, we compare the solutions of the existing equations of particle motion

(equations (1.3), (1.4), (1.5), and (1.7a)) with the Navier–Stokes solution. In § 3.2, we
propose a new improved equation of particle motion and compare its solution with
the Navier–Stokes solution.

3.1. Comparison of the solution of the previous equations with that of the
Navier–Stokes equations

We now compare the numerical results of the equations (1.3), (1.4), (1.5), and (1.7a)
introduced in § 1 with those from the full Navier–Stokes equations for unsteady,
axisymmetric flow around a freely moving sphere injected into an initially stagnant
fluid.

Figure 2(a) shows the drag coefficients of the sphere as a function of time
(0 6 t∗ 6 200) with initial particle Reynolds number Reto = 150 and the sphere/fluid
density ratio ρr = 5, where t∗ = tvo/a = tv(0)/a and Reto = |u(0) − v(0)|2a/νf . The
superscript ∗ denotes a dimensionless quantity hereinafter. At t∗ = 200, the particle
Reynolds number reduces to 4. The Basset history term in equations (1.3) and (1.5)
causes too low a value for the drag coefficient compared with the Navier–Stokes solu-
tion. The drag coefficient from equation (1.7a) proposed by MA is the closest to that
from the Navier–Stokes equations, but with increasing discrepancy as t∗ increases. The
drag coefficient from equation (1.7a) was computed excluding the negative time period
(−∞ < τ < 0) from the history integral. The effect of this negative time period will be
discussed in § 3.2 and will be included in evaluating the history integral in §§ 3.3 and 3.4.
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Figure 2. Drag coefficients as a function of time obtained from various equations for
Reto = 150 and (a) ρr = 5, (b) ρr = 200.

The accuracy of the Navier–Stokes solution shown in figure 2 (the most unsteady
flow studied here) has been examined by using a much larger computational domain
(denoted D121) with 121 × 121 grid points whose outer boundary was extended to
121 sphere radii in the downstream direction as described in § 2.3. We computed the
drag coefficient of the sphere as a function of time (0 6 t∗ 6 200) with the same
parameters as those used in figure 2. The difference between the drag coefficient
magnitudes obtained from the D21 and D121 domains, normalized by the latter,
equals 0.77% at the final time tf = 200 (CD = 3.86 and 3.89 at the final time for the
D21 and D121 domains, respectively). The maximum difference is 1% and occurs
at t = 5.2, excluding the initial period following the sphere injection (0 < t 6 0.7).
Therefore, we concluded that the computational domain D21 whose outer boundary
is located at 21 sphere radii from the sphere centre is large enough to compute the
unsteady wake and drag correctly. Also, we computed the drag coefficient of the
sphere as a function of time (0 6 t∗ 6 200) with the time step reduced by half
with the same parameters as those used in figure 2. The difference between the drag
coefficient magnitudes from the two computations, normalized by the coefficient of
the reduced time step, equals only 0.09% at tf = 200.

Figure 2(b) shows the drag coefficients of the sphere as a function of time (0 6
t∗ 6 200) with the same particle Reynolds number as in figure 2(a) but with the
density ratio ρr = 200. At t∗ = 200, the particle Reynolds number reduces to 109.8.
The Basset history term in equations (1.3) and (1.5) still results in lower values for the
drag coefficient. Now, the solution of equation (1.7a) gives a good approximation to
that of the Navier–Stokes equations. However, it is noted that the solution of equation
(1.4) also gives a good approximation and is very close to that of the Navier–Stokes
equations. Thus, for high density ratio (ρr) the deviation from the Navier–Stokes
solution is reduced. The effect of ρr will be explained in detail later in § 3.2

Lawrence & Mei (1995) show that a sudden acceleration of a particle creates
an effective ‘sink’ that flows downstream in the particle wake. One might question
the importance of keeping this sink within the computational domain in order to
maintain numerical accuracy. The insertion of a moving particle at the initial time is
equivalent to a sudden acceleration. The results of figure 2 show no indication of any
abnormality in the solution at the time t∗ = 21 when the sink should advect from the
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computational domain. Also there is no sensitivity of the solution to the size of the
computational domain. We conclude that the hydrodynamic forces are adequately
computed in the Reynolds number range of interest without attempts to track the
sink behaviour far downstream.

3.2. New equation for particle motion

In order to understand the physics of the forces acting on the sphere, the momentum
equation (2.3b) is non-dimensionalized using the sphere radius a as the characteristic
length, the characteristic relative velocity of the sphere Uc, and the characteristic time
scale tc.

Sl

(
dv∗

dt′
+
∂W ∗

∂t′

)
+ ∇ ·W ∗W ∗ = −∇p∗ +

2

Re
∇2W ∗, (3.1)

where Re = Uc2a/νf , Sl = (a/Uc)/tc, and t′ = t/tc. Strouhal number Sl = (a/Uc)/tc is
the ratio of the time scale of residence a/Uc to that of the unsteadiness tc (Lovalenti
& Brady 1993a).

Equation (3.1) shows that when Sl � 1, the nonlinear term can be neglected with
respect to the unsteady term. Under this condition the Basset (history) term accounts
for the unsteady viscous force correctly. Otherwise, the nonlinear term cannot be
neglected, and as a result, the Basset (history) term could not describe correctly the
unsteady force and thus should be modified to include the effect of the nonlinear
advection.

There are two typical cases where the magnitude of the Strouhal number may
change: (i) oscillatory motion of the carrier fluid and (ii) non-inertial effect (i.e.
acceleration or deceleration) of the sphere. The latter case may strongly depend on
the sphere/fluid density ratio or the time elapsed after the release of a sphere from
rest under gravity. Note that a high Strouhal number can occur in the latter case
regardless of the magnitude of the flow oscillation.

MA found that the original integral kernel by Basset (the first right-hand side
term in equation (1.7b) is valid only for high frequencies at low and finite Reynolds
numbers. They modified the integral kernel by interpolating the term representing the
original Basset kernel and the term representing low frequencies (the second right-
hand side term in equation (1.7b)). However, the term representing low frequencies was
developed by them under the assumption of small-amplitude oscillation of the free
stream. Therefore, their modified kernel (1.7b) cannot correctly predict the behaviour
of a spherical particle when it undergoes large acceleration or deceleration in a flow at
low frequency. For example, as seen in the previous section, equation (1.7a) produces
a less accurate solution for the drag of a sphere with lower density ratio than for the
case with high density ratio; in other words, equation (1.7a) produces a less accurate
solution for a sphere with higher deceleration than with lower deceleration.

The above analysis suggests that the term representing low frequencies should
be weighted by the acceleration magnitude. We propose a weighting function that
contains the time derivative of the relative velocity MA1 and the ratio φr of MA2 to
MA1. MA1 was defined by equation (1.6), and MA2 and φr are defined as follows:

MA2(t) =
(2a)2

|u− v|3

∣∣∣∣d2|u− v|
dt2

∣∣∣∣ ; φr(t) =
MA2

MA1

. (3.2)

These dimensionless groups can be introduced through dimensional analysis to obtain
the forces on the particle of unsteady motion (Clift et al. 1978).

Since there are many engineering applications in which particles (or droplets) are
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injected into the flow, e.g. gas-turbine and diesel engine combustion chambers, we
must account for the initial relative velocity between the fluid and particle in the
equation of particle motion. When a spherical particle is introduced suddenly into
a flow, a vortex sheet is generated around the sphere due to the step change in the
velocity across the sphere surface, and a high drag is produced initially on the sphere.
Kim et al. (1995, 1996) showed the generation of the vortex sheet graphically and
discussed the initial high drag in their study of unsteady flow interaction between a
sphere and vortex tubes. The high drag is also shown in figure 2. As mentioned in
§ 1, Maxey (1993) derived a term representing the effect of the initial relative velocity
between the particle and the carrier fluid. However this term is valid only for a
creeping flow (Re→ 0) and should be modified for finite-Reynolds-number flows.

Based on the above discussion of the history integral kernel and the initial relative
velocity, we propose a new equation for particle motion with the objective of removing
the deficiencies of the existing equations. We begin with the following general form:

mp
dv

dt
= 1

2
CDstdπa

2ρf | u− v | (u− v) + 1
2
mf

(
Du

Dt
− dv

dt

)
+ mf

Du

Dt

+6πµfa

∫ t

−∞
K(t− τ, τ)d(u− v)

dτ
dτ+ (mp − mf)g. (3.3)

The derivation of the history force is based on the condition that the particle is
present at all times, and the lower limit of integration should be negative infinity. Now
we show that the term associated with the initial velocity difference can be derived
from the history integral with −∞ lower limit:∫ t

−∞
K(t− τ, τ) d

dτ
[u(τ)− v(τ)] dτ. (3.4)

A particle instantaneously appearing in a fluid at t = 0 is the same as a particle
being in a stagnant fluid for −∞ < t < 0 and having the bulk fluid velocity make a
step change at t = 0. Thus, the relative velocity term in the history integral (3.4) can
be rewritten as

[u(τ)−v(τ)]−∞<τ6t = [u(0+)−v(0+)]H(τ)−
{

[u(0+)− v(0+)]− [u(τ)− v(τ)]
}

0<τ6t
, (3.5)

where H(τ) is the Heaviside step function and the term in the curly brace is assumed
to be zero for t < 0. Equation (3.5) is differentiated with respect to τ to obtain{

d

dτ
[u(τ)− v(τ)]

}
−∞<τ6t

= [u(0+)− v(0+)]δ(τ) +

{
d

dτ
(u(τ)− v(τ))

}
0<τ6t

. (3.6)

Substituting equation (3.6) into the history integral (3.4), we obtain∫ t

−∞
K(t− τ, τ)d(u− v)

dτ
dτ =

∫ t

0+

K(t− τ, τ)d(u− v)
dτ

dτ+K1(t)[u(0
+)− v(0+)], (3.7)

where K1(t) ≡ K(t, 0). For the case where there is a steady flow prior to t = 0 with
an impulse at t = 0, equation (3.7) is replaced by∫ t

−∞
K(t− τ, τ)d(u− v)

dτ
dτ =

∫ t

0+

K(t− τ, τ)d(u− v)
dτ

dτ

+K1(t) [u(0+)− v(0+)− u(0−) + v(0−)]. (3.8)
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Now, equation (3.3) can be rewritten as

mp
dv

dt
= 1

2
CDstdπa

2ρf | u− v | (u− v) + 1
2
mf

(
Du

Dt
− dv

dt

)
+ mf

Du

Dt

+6πµfa

∫ t

0+

K(t− τ, τ)d(u− v)
dτ

dτ+ (mp − mf)g

+6πµfa K1(t) [u(0+)− v(0+)− u(0−) + v(0−)]. (3.9a)

We have used our numerical solution results to develop a form for the kernel K(t−
τ, τ) (and consequently for K1(t)) that matches the low-Reynolds-number asymptotes
at low and high frequencies. It also matches the Navier–Stokes equation solutions
over wide ranges of frequency and Reynolds number. In particular, we have

K(t− τ, τ) =

{[
π(t− τ)νf

a2

]1/(2c1)

+ G(τ)

[
π

2

|u(τ)− v(τ)|3

aνff
3
H (Ret)

(t− τ)2

]1/c1
}−c1

, (3.9b)

G(τ) =
1

1 + β(MA1(τ))1/2
, (3.9c)

β =
c2

1 + φrφ
c4
r /[c3(φr + φc4

r )]
, (3.9d)

fH = 0.75 + c5Ret(τ), (3.9e)

where Ret = |u(τ)− v(τ)|2a/νf .
Now, we show that the low-Reynolds-number asymptotes are correctly obtained

with no dependence on the choice of c1–c5. Equation (3.9c) shows that as MA1 is
reduced, G(τ) approaches unity, and the present kernel (equation (3.9b)) becomes
similar in form to the kernel of equation (1.7b). On the other hand, as MA1 becomes
large, G(τ) approaches zero, and the present kernel becomes of the same form as that
of Basset (1888) (equation (1.1)). The β in the expression for G(τ) is not a constant
but a function of φr , the ratio of MA2 to MA1. This function behaves as follows:
β ' c2(1 − φr/c3) for φr � 1, and β ' c2c3/φ

c4
r for φr � 1. Now we investigate

the behaviour of the present kernel at high frequencies by normalizing the time by a
characteristic frequency ω and the velocities by a characteristic velocity Uc, thus:

K(t′ − τ′, τ′) =

{[
π(t′ − τ′)
SlωReR

]1/(2c1)

+ G(τ′)

[
π

2

|u∗(τ′)− v∗(τ′)|3

f3
H (Ret)

ReR

Sl2ω
(t′ − τ′)2

]1/c1
}−c1

,

where τ′ = τω and ReR = Uca/νf . Also, it can be shown that G(τ∗) ' Sl−0.4
ω as

Slω � 1. Therefore, the present kernel becomes of the same form as that of Basset
(1888) (equation (1.1)) as the dimensionless frequency becomes large.

It can be shown that the function K1(t) can be approximated as

K1(t) =

{[
πtνf

a2

]1/(2c1)

+ G1

[
π

2

|u(0)− v(0)|3

aνff
3
H (Reto)

t2
]1/c1

}−c1

, (3.9f)

G1 =
1

1 + c6Re
−1/4
to (ρr + 0.5)−1/2

, (3.9g)

where Reto = |u(0)− v(0)|2a/νf .
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G1 (equation (3.9g)) is obtained from G(τ = 0) (equation (3.9c)) as follows. From
the equation of particle motion equation (3.9a), it can be shown that dv/dt ' kt−1/2

as t → 0, where k = (4.5/a)(νf/π)1/2 (ρr + 0.5)−1(u(0) − v(0)). Employing this form
of dv/dt, the expressions for MA1, MA2, and φr as t → 0 can be also derived. For
example, φr is expressed by φr ' at−1/(u(0)− v(0)). Finally, G(τ→ 0) is obtained as

G(τ→ 0) ∼ 1

1 + ατc4−1/4Re
−1/4
to (ρr + 0.5)−1/2

where α = c2c3(9
√

2/π1/2)1/2(|u(0)− v(0)|/a)c4−1/4. This equation shows that G(0) = 0
when c4 < 0.25 but G(0) = 1 when c4 > 0.25. However, the drag coefficient from the
numerical computation of equation (3.9a) with G1 = G(0) = 0 or G1 = G(0) = 1 is
too high or low for some initial period compared with that from the Navier–Stokes
equations. Therefore, the constant c4 is chosen as 0.25 so that G(0) never equals 0
and does not equal 1 unless ρr becomes infinity. G1 was introduced according to
equation (3.9g) by following the form of G(τ → 0), and the coefficient c6 in the
expression for G1 is determined by numerical optimization. Note that for a fixed
particle, G1 becomes unity (equation (3.9g)), and thus the hydrodynamic force does
not depend on the density of the particle. This fixed particle limit can be viewed as an
infinite particle density limit. For a fixed particle, the left-hand side of equation (3.9a)
should be replaced by the negative of the applied force required to fix the particle
under the action of the hydrodynamic forces.

Equations (3.9f) and (3.9g) show that as the density ratio ρr becomes large, G1

approaches unity, and the function K1(t) becomes proportional to 1/t2 at large time.
This indicates that when ρr is large, the drag due to the initial velocity difference
decays rapidly with time and becomes negligible compared to the quasi-steady drag
CDstd in the new equation (3.9a). On the other hand, when ρr and the initial Reynolds
number are both small, G1 is small, and the t−1/2 term in the function K1(t) remains
important even at large time. This indicates that when the density ratio is small
in low-Reynolds-number flows, the drag due to the initial velocity difference decays
slowly with time and would not be negligible compared to the quasi-steady drag CDstd
in the new equation at least for some finite time.

In order to calculate K(t) from K(t − τ, τ) at τ = 0, the quantity G(τ) in the
expression for K(t− τ, τ) (equation (3.9b)) should be evaluated at τ = 0. The notation
G(τ = 0) = G1 is used. Now equation (3.7) or (3.8) is a more convenient form than
equation (3.4) since the initial relative velocity appears explicitly. It should be noted
that the representation of the effect of the initial relative velocity in equation (3.9a)
differs from the representation in Maxey’s (1993) formulation through the addition
of the second term on the right in equation (3.9f). The difference becomes important
at lower acceleration magnitudes.

The value of the constant c4 was determined as 0.25 before when G(τ → 0) was
evaluated. The values of the other five constants ci (i = 1, 2, 3, 5, 6) in the above
equations are determined by comparing the numerical solutions of equation (3.9a)
with those of the Navier–Stokes equations. The six constants are

c1 = 2.5, c2 = 22.0, c3 = 0.07, c4 = 0.25, c5 = 0.126, c6 = 17.8 . (3.9h)

Some features of equation (3.9a) are discussed in the following.

When G(τ) equals unity, the present integral kernel (equation (3.9b)) is similar to
equation (1.7b) by MA, but with values of c1 and c5 different from those used in
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equation (1.7b). MA used the values 2 and 0.105 for c1 and c5 which were determined
respectively by an interpolation and curve fitting.

Equation (3.9a) has not been tested for non-uniform free streams. It might fail
when the characteristic length for variation in the free stream becomes as small as or
smaller than the particle dimension.

Lawrence & Mei (1995) investigated the long-time behaviour of the drag on a body
in impulsive motion by solving a special case of a step change in the fluid velocity
from U1 to U2 (both U1 and U2 are constant) in a flow past a body fixed in space.
Lovalenti & Brady (1995) also used the same special case to compare their results
with those obtained by Lawrence & Mei (1995) for small Reynolds number (Re 6 1).
Our proposed expression for the history force has the same form as that proposed by
MA for that special case as discussed next.

For the case of U1 = 0 and U2 6= 0, which implies that the fluid velocity is changed
from 0 to U2 at t = 0 while the sphere is fixed in space, the history integral with zero
lower limit in equation (3.9a) is zero because U2 is constant and thus the relative
acceleration is zero. But the initial relative velocity term is non-zero and equals U2K(t)
which is identical to the history integral of MA, because ρr in our equation (3.9g)
equals ∞ for a sphere fixed in space and G1 becomes unity.

For the case of U1 6= 0 and U2 6= 0, which implies that the fluid velocity is changed
from U1 to U2 at t = t1 while the sphere is fixed in space, the initial relative velocity
term is zero. But the history integral with zero lower limit in equation (3.9a) is non-
zero and equals (U2 − U1)K(t) which is identical to the history integral of Mei &
Adrian (1992) for the same reason as above.

3.3. Comparison of the solution of the proposed equations with the Navier–Stokes
solution for an initially stagnant flow

Figure 3(a) shows the drag coefficients of the sphere as a function of time for the
same conditions as in figure 2(a), but here the drag coefficient from the new equation
(3.9a) is compared with those from the BBO equation (1.3) and equation (1.7a) by
MA including an initial velocity difference term. We note that the initial velocity
difference terms are different among the equations because the integral kernels are
different among them. The initial velocity difference term added to the BBO equation
(equation (1.3)) is the term given by Maxey (1993) and discussed earlier in § 1. The
initial velocity difference term added to equation (1.7a) is the term given by setting
G1 = 1 with c1 = 2 and c5 = 0.105 in equations (3.9f) and (3.9e). It is shown in figure
3(a) that our new equation (3.9a) gives the most accurate solution.

Comparing figures 2(a) and 3(a), we see that the initial velocity difference term
with t−1/2 improves equation (1.3). However, the appropriate decay of this term is
t−2 for finite initial particle Reynolds number (see equation (3.9f)). Note that the
initial velocity difference term decays as t−1/2 when Reto � 1 in a creeping flow (see
equations (3.9g) and (3.9f)).

Figure 3(b) shows the drag coefficients as a function of time (0 6 t∗ 6 100) for
the same conditions as in figure 3(a) except that Reto = 75. At t∗ = 100, the particle
Reynolds number equals 2.98. Figure 3(c) displays the drag coefficients as a function
of time (0 6 t∗ 6 50) for the same conditions as in figure 3(a) except that Reto = 38.
At t∗ = 50, the particle Reynolds number equals 2.18. It is seen that the new equation
(3.9a) gives the best solution for low initial particle Reynolds numbers as well.

In order to examine the contributions to the total drag coefficient from each term
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Figure 3. Drag coefficients as a function of time obtained from various equations with an initial
velocity difference term for ρr = 5 and (a) Reto = 150, (b) Reto = 75, (c) Reto = 38.

on the right-hand side of (3.9a), we may rewrite (3.9a) as

mp
dv

dt
= 1

2
πa2ρf | u− v | (u− v) CDtot

= 1
2
πa2ρf | u− v | (u− v)(CDstd + CDadd + CDfld + CDhis + CDini + CDgrv) (3.10)

where CDstd represents the quasi-steady drag coefficient from the (steady) standard
drag curve, CDadd represents the drag coefficient due to the added mass force, CDfld
represents the drag coefficient due to the carrier fluid acceleration or the gradient
of the pressure and the shear stress at the position of the sphere, CDhis represents
the drag coefficient due to the (unsteady) history force which is the integral of the
past relative acceleration of the sphere weighted by the kernel K; CDini represents the
drag coefficient due to the initial velocity difference between the carrier fluid and the
sphere, and CDgrv represents the drag coefficient due to the net gravity force which
equals zero in the present simulations.

Figure 4(a) shows CDtot, CDstd, CDadd, CDhis, and CDini as a function of time. They
are obtained from the new equation for initial particle Reynolds number Reto = 150
and the sphere/fluid density ratio ρr = 5 (the same parameters as used in figure 3(a)).
The drag coefficient due to the history integral is large compared to that in the case
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Figure 4. (a) CDtot, CDstd, CDadd, CDhis, and CDini as a function of time obtained from the new equation
for Reto = 150 and ρr = 5. (b) As (a) but the drag coefficients are multiplied by U2

rel . (c) As (a) but
for ρr = 200.

of ρr = 200 as shown in figure 4(c) because the sphere experiences high deceleration.
Note that the drag coefficient due to the initial velocity difference increases slowly
with time. The reason is that the drag coefficient is obtained by normalizing the force
with the instantaneous relative velocity (see equation (2.8)) and the magnitude of the
relative velocity decays rapidly as will be seen in figure 6(b). Figure 4(b) shows the
temporal behaviour of the same drag coefficients as in figure 4(a) multiplied by U2

rel ,
where Urel = |u − v|/vo, and thus represents the actual forces on the sphere. In this
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Figure 5. Drag coefficients as a function of time obtained from various equations with an initial
velocity difference term for Reto = 150 and ρr = 200.

case of a decelerating particle, the history term provides a negative contribution. The
effect of acceleration with an oscillatory flow is considered later.

Figure 5 compares the drag coefficients as a function of time, for the same conditions
as in figure 2(b), computed from the new equation (3.9a) and those from (1.3) and
(1.7a) including an initial velocity difference term. Solutions from both (1.7a) and
(3.9a) agree well with that of the Navier–Stokes equations. As mentioned in the
discussion of figure 3(a), the initial velocity difference terms are different among
the equations because the integral kernels are different. By comparing the results
from equation (1.3) in figure 2(b) (which does not account for the initial velocity
difference) and figure 5, we now see that the initial velocity difference term with
t−1/2 derived by Maxey (1993) for a creeping flow is not appropriate for the case of
finite-Reynolds-number flows.

The improved performance of equation (1.7a) for the case of higher density ratio is
due to the small acceleration number MA1 in the case of higher density ratio as will
be shown in figure 6(a). When MA1 is small, the function G(τ) in (3.9b) approaches
unity, and thus the integral kernel of (3.9a) approaches that of (1.7a).

Figure 4(c) displays the contributions to the total drag coefficient from CDstd, CDadd,
CDhis, and CDini which are obtained with the new equation for initial particle Reynolds
number Reto = 150 and the sphere/fluid density ratio ρr = 200. It is observed that
the contributions from CDadd, CDhis, and CDini are small except for the large CDini for a
short initial period, and that the quasi-steady drag coefficient approximates the total
drag coefficient very well. The force due to the initial velocity difference is small due
to the high density ratio as mentioned earlier.

Figure 6(a) shows the acceleration number MA1 as a function of time for four
different cases: (i) ρr = 5 and Reto = 38, (ii) ρr = 5 and Reto = 75, (iii) ρr = 5 and
Reto = 150, and (iv) ρr = 200 and Reto = 150. It is seen that MA1(t) is very small for
the case of ρr = 200 and Reto = 150, and figure 4(c) showed that the history force is
very small for that case as well. Furthermore, figures 4(a) and 6(a) indicate that the
history force is not small when MA1(t) is not small. This indicates that MA1 controls



238 I. Kim, S. Elghobashi and W. A. Sirignano

1.0

–0.2
0 40 80 120 160 200

t*

MA1

0.8

0.6

0.4

0.2

0

(a)

ρr = 200, Reto=150
ρr = 5, Reto=150
ρr = 5, Reto=75
ρr = 5, Reto=38

1.2

0 40 80 120 160 200

t*

Urel

1.0

0.8

0.6

0.4

0.2

(b)

Figure 6. (a) Dimensionless relative acceleration MA1 and (b) dimensionless relative velocity Urel

as a function of time for four different cases.

the magnitude of the history integral which will be discussed in more detail later in
this section.

Figure 6(b) portrays the dimensionless relative velocity Urel = |u−v|/vo as a function
of time for the same cases as in figure 6(a). This figure indicates that the lower the
density ratio the higher is the deceleration, and the lower the initial Reynolds number
the higher is the deceleration.

3.4. Comparison of the solution of the proposed equations with the Navier–Stokes
solution for an oscillating flow

Now we compare the numerical results of the new equation (3.9a) and the equations
(1.4), (1.5), and (1.7a) introduced in § 1 with those from the full Navier–Stokes
equations for unsteady, axisymmetric flow around a freely moving sphere injected
into a fluid oscillating with time in the X-direction as

ux(t) = α1|v| sinωt, (3.11a)

uσ(t) = 0, (3.11b)

where α1 is a constant controlling the amplitude and ω is the angular frequency. The
associated far pressure field can be obtained from the Navier–Stokes equations as

pb(x, t) = −ρfα1

(
d|v|
dt

sinωt+ |v|ω cosωt

)
X + pref (3.12)

where pref is the reference pressure at X = 0.
Figure 7 shows the drag coefficients of the sphere as a function of time

(0 6 t∗ 6 200) for Reto = 150 and ρr = 5 with the base flow oscillating with
Slω = 0.1 and α1 = 0.02. This figure compares the drag coefficients obtained from the
solution of Navier–Stokes equations, the new equation (3.9a), equation (1.7a) by MA
including an initial velocity difference term, equation (1.5) by OH, and equation (1.4)
with only CDstd. It is shown that equation (1.7a) with an initial velocity difference term
produces higher drag coefficients (except for some initial period) than do the Navier–
Stokes equations. Again, the new equation (3.9a) produces very good agreement with
the Navier–Stokes equations.

Figure 8 shows the temporal behaviour of CDtot, CDstd, CDadd, CDhis, CDini, and CDfld
obtained from the new equation for the same conditions used in figure 7. The drag
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Figure 7. Drag coefficients as a function of time obtained from various equations for Reto = 150
and ρr = 5 with the base flow oscillating with Slω = 0.1 and α1 = 0.02.
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Figure 8. (a) CDtot, CDstd, CDadd, CDhis, CDini, and CDfld as a function of time obtained from the
new equation for the same parameters as used in figure 7. (b) As (a) but the drag coefficients are
multiplied by U2

rel .

coefficient due to the history integral is large compared with that in the case of
ρr = 200 as shown in figure 12 because the sphere experiences high deceleration. The
magnitude of the relative velocity Urel decays rapidly as will be seen in figure 17(b).
Figure 8(b) presents the temporal behaviour of the same drag coefficients as in figure
8(a) multiplied by U2

rel and thus represents the actual forces on the sphere.
Figure 9 displays the drag coefficients of the sphere as a function of time (0 6

t∗ 6 200) for the same conditions as used in figure 7 except Slω = 0.4 It is seen
that equation (1.7a) with an initial velocity difference term produces higher drag
coefficients (except for some initial period) than do the Navier–Stokes equations.
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Figure 9. Drag coefficients as a function of time obtained from various equations for Reto = 150
and ρr = 5 with the base flow oscillating with Slω = 0.4 and α1 = 0.02.
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Figure 10. (a) CDtot, CDstd, CDadd, CDhis, CDini, and CDfld as a function of time obtained from the
new equation for the same parameters as used in figure 9. (b) As (a) but the drag coefficients are
multiplied by U2

rel .

Again, the new equation (3.9a) produces very good agreement with the Navier–Stokes
equations.

Figure 10(a) shows the temporal development of CDtot, CDstd, CDadd, CDhis, CDini, and
CDfld obtained from the new equation for the same conditions used in figure 9. By
comparing figures 8(a) and 10(a), we note that CDfld is strongly affected by and nearly
proportional to the magnitude of the dimensionless frequency. This can be also found
via a process of non-dimensionalization, which will be shown later in this section.
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Figure 11. Drag coefficients as a function of time obtained from various equations for Reto = 150
and ρr = 200 with the base flow oscillating with Slω = 0.1 and α1 = 0.06.

Figure 10(b) shows the temporal behaviour of the same drag coefficients as in figure
10(a) multiplied by U2

rel , and thus represents the actual forces on the sphere.
Figure 11 plots the drag coefficients of the sphere as a function of time

(0 6 t∗ 6 200) for Reto = 150 and ρr = 200 with the base flow oscillating with
Slω = 0.1 and α1 = 0.06. The drag coefficients were obtained by solving the same five
different equations as in figure 7. At t∗ = 200, the particle Reynolds number becomes
115.6. Solutions from both (1.7a) and (3.9a) agree well with the Navier–Stokes solu-
tion. The improved performance of (1.7a) for the case of higher density ratio is due
to the small acceleration number MA1 in the case of higher density ratio as will be
shown in figure 17(a).

The contributions to the total drag coefficient from each term of the new equation
are shown in figure 12 for the same conditions as figure 11. CDadd, CDhis, CDini, and
CDfld are small compared to CDstd except the large CDini for a short initial period. The
magnitude of the relative velocity Urel is reduced slowly as will be seen in figure 17(b).

In order to examine the effect of each term in the new equation, we plot in figure
13 the drag coefficients as a function of time from the complete new equation (3.9a),
without the history term, without the history and fluid acceleration terms, and with
only CDstd. Neglecting the history term and the other terms in equation (3.9a) causes
a small phase lag in the drag coefficient.

Figure 14 presents the temporal development of the drag coefficients (0 6 t∗ 6 200)
for the same conditions as used in figure 11 except Slω = 0.4. At t∗ = 200, the particle
Reynolds number becomes 103.2. Solutions from equations (1.7a) and (3.9a) agree
well with the Navier–Stokes solution. Equation (1.4) predicts much smaller amplitude
in the drag coefficient than do the others.

The contributions to the total drag coefficient from each term of the new equation
are shown in figure 15 for the same conditions as used in figure 14. By comparing
figures 12 and 15, we note that CDfld is strongly affected by the magnitude of the
frequency, and its amplitude is almost linearly proportional to that of the frequency.
Figure 16 displays the temporal behaviour of the drag coefficients from the complete
new equation, without the history term, without the history and fluid acceleration
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Figure 12. CDtot, CDstd, CDadd, CDhis, CDini, and CDfld as a function of time obtained from the new
equation for the same parameters as used in figure 11.

terms, and with only CDstd. It is observed that neglecting the term CDfld causes the
amplitude of the drag coefficient to be smaller.

Figure 17(a) shows the acceleration number MA1 as a function of time for four
different cases: (i) ρr = 5, Slω = 0.4 and α1 = 0.02, (ii) ρr = 5, Slω = 0.1 and α1 = 0.02,
(iii) ρr = 200, Slω = 0.4 and α1 = 0.06, and (iv) ρr = 200, Slω = 0.1 and α1 = 0.06. It
is noted from the figure that although α1 and Slω are varied by less than an order of
magnitude, the acceleration number (which is the primitive parameter) is varied by
more than one order of magnitude. [MA1]av , the mean of MA1, decreases as the density
ratio increases, a similar behaviour to that of MA1 in figure 6(a), where [MA1]av is
defined by ∫ tf

0

[MA1]av(t) dt =

∣∣∣∣∫ tf

0

2a

|u− v|2
d|u− v|

dt
dt

∣∣∣∣ . (3.13)

It is observed by inspection that [MA1]av is not affected strongly by the magnitude
of the dimensionless frequency at least for a simple harmonic oscillation (i.e. one
Fourier mode) of the base flow. It will be shown later that the integrand of the right-
hand side of equation (3.13) is a part of the integrand of the history integral. Also,
the comparison of figures 13 and 16 indicates that the contribution from the history
integral to the total drag is not increased when the frequency increases by a factor of 4.

Figure 17(b) shows the dimensionless relative velocity Urel = |u−v|/vo as a function
of time for the same cases as figure 17(a). This figure indicates, as expected, that Urel

for ρr = 5 decays faster than that for ρr = 200. Therefore, the history integral for the
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Figure 13. Drag coefficients as a function of time from the complete new equation, without the
history term, without the history and fluid acceleration terms, and with only CDstd for the same
parameters as used in figure 11.
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Figure 14. Drag coefficients as a function of time obtained from various equations for Reto = 150
and ρr = 200 with the base flow oscillating with Slω = 0.4 and α1 = 0.06.

case of ρr = 5 is much larger than that for the case of ρr = 200 as indicated in the
previous figures 8(a), 10(a), 12, and 15.

Finally, in order to examine the relative importance of the terms in equation (3.9a),
we re-write it as

dv

dt
=

3

8a

| u− v | (u− v)
ρr

(CDstd + CDadd + CDfld + CDhis + CDini + CDgrv). (3.14)
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Figure 15. CDtot, CDstd, CDadd, CDhis, CDini, and CDfld as a function of time obtained from the new
equation for the same parameters as used in figure 14.

The six terms on the right-hand side of equation (3.14) can be expressed as

CDadd =
4

3

a

| u− v | (u− v)

(
Du

Dt
− dv

dt

)
≈ 4

3

a

(u− v)2

d | u− v |
dt

≈ 2
3
MA1; (3.15)

CDfld =
8

3

a

| u− v | (u− v)
Du

Dt
≈ 8

3

Slω

| u∗ − v∗ | (u∗ − v∗)
∂u∗

∂t′
, (3.16)

where t′ is the time normalized by frequency ω, and u∗ and v∗ the velocity normalized
by the sphere injection velocity vo;

CDhis =
12

(πReR)1/2|u∗ − v∗|2

∫ t∗

0

K∗(t∗ − τ∗, τ∗)d|u∗ − v∗|
dτ∗

dτ∗

≈ 12

(πReR)1/2

∫ t∗

0

K∗(t∗ − τ∗, τ∗)
|u∗ − v∗|2

d|u∗ − v∗|
dτ∗

dτ∗ if
d|u∗ − v∗|2

dt∗
� 1

≈ 6

(πReR)1/2

∫ t∗

0

K∗(t∗ − τ∗, τ∗) S MA1(τ
∗) dτ∗ (3.17)

with the integral kernel K∗(t∗ − τ∗, τ∗) given by

K∗(t∗ − τ∗, τ∗) =

{
(t∗ − τ∗)1/5 + G(τ∗)

[
π1/2

2
Re

3/2
R

|u∗(τ∗)− v∗(τ∗)|3

aνff
3
H (Ret)

(t∗ − τ∗)2

]2/5
}−5/2

,
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Figure 16. Drag coefficients as a function of time from the complete new equation, without the
history term, without the history and fluid acceleration terms, and with only CDstd for the same
parameters as used in figure 14.
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as a function of time for four different cases.

where ReR = Uca/νf , S = sgn(d|u∗ − v∗|/dτ∗), and t∗ and τ∗ are the times normalized
by the convection time a/vo;

CDini =
12

(πReR)1/2

K∗1 (t∗)

|u∗ − v∗|(u∗ − v∗) [u∗(0)− v∗(0)] (3.18)

where K∗1 (t∗) is obtained from K∗(t∗, τ∗ = 0) but with G(τ∗) replaced by G1 (equation
(3.9g));

CDgrv =
8

3

a(ρr − 1)g

|u− v|(u− v) . (3.19)

Equations (3.15) and (3.17) show that CDadd and CDhis can be neglected compared to
the quasi-steady drag CDstd when MA1(t)� CDstd(t) for all t. In fact, MA1 → 0 produces
the quasi-steady limit. Also, equation (3.17) indicates that CDhis is proportional to
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Re
−1/2
R . Equation (3.16) shows that CDfld can be neglected compared to CDstd when

Slω is small. As mentioned before, the function K ′1 in equation (3.18) contains G1

which is explicitly a function of the density ratio ρr (see equation (3.9g)). As the
density ratio becomes large, G1 approaches unity, and the function K ′1(t) becomes
proportional to 1/t2 at large time. Thus, as the density ratio increases, the drag
due to the initial velocity difference decays faster with time and would be negligible
compared to CDstd.

3.5. Flow structure

In this subsection, we examine the physical processes of the unsteady, axisymmetric
flow around a freely moving sphere injected into an initially stagnant fluid. The sphere
will be decelerating due to the drag. All the figures in this subsection describe the
flow around a sphere as a function of time (0 6 t∗ 6 300) with the initial particle
Reynolds number Reto = 150, where t∗ = tv(0)/a and Reto = |u(0) − v(0)|2a/νf . The
ratio of the sphere density to that of the fluid is ρr = 5. A grid with 121× 121 mesh
points is used with a computational domain extending in the downstream direction
121 sphere radii for better resolution of the wake region.

Figure 18 compares the streamlines of the unsteady flow (left-hand column) and
steady flow (right-hand column) over a sphere at the same Reynolds numbers. The
left-hand column figures 18a–f show the streamlines around the sphere at t = 5,
20, 40, 100, 200, and 300, respectively. The corresponding instantaneous Reynolds
numbers are Ret = 96.6, 53.8, 31.5, 11.2, 4.04, and 2.12, respectively. The dimensionless
stream function ψ∗ is defined in spherical coordinates via

W ∗
θ =

v

vo

1

r∗ sin θ

∂ψ∗

∂r∗
. (3.20)

The stream function is normalized by va2 where v is the instantaneous velocity of the
sphere. On the other hand, the velocity W ∗

θ is normalized by vo, the initial injection
velocity of the sphere (see § 2.2). For left- and right-hand columns the contour values
of the stream function outside the recirculation zone are 0, 0.125, 0.5, 1.125, and 2,
and those inside that zone are −0.02, −0.1, −0.25, −0.5, and −0.8.

As expected, the steady flow figures show that the size of the recirculation eddy
decreases as Reynolds number decreases. On the other hand, the unsteady flow figures
show that as the sphere decelerates, the eddy size grows monotonically even though
the instantaneous Reynolds number of the sphere decreases. At t = 300, the size of
the eddy becomes much larger than the sphere size; the length of the eddy is 15.4
radii measured from the centre of the sphere. This length is more than twice that of
the eddy (6.8 radii) for the steady flow at Re = 5000 computed by Fornberg (1988)
who solved numerically the steady stream function–vorticity equations. Note that the
real flow past a sphere would not be steady at Re = 5000.

For a steady free stream relative to a sphere, the flow along the edge of the
boundary layer on the sphere surface accelerates from the front stagnation point and
reaches a maximum velocity at a location on the sphere surface that subtends an
angle, θst, less than 90◦ (measured from the front stagnation point) and then starts to
decelerate. The angle θst depends on Reynolds number. For an unsteady decelerating
free stream, the flow along the boundary layer edge begins to decelerate at a location
on the sphere surface with an angle smaller than θst at the same Reynolds number.
This behaviour is evident in the shear stress distributions around the sphere shown
in figure 19a–f. As a consequence, the free-stream deceleration reduces the angle of
inception of the adverse pressure gradient along the surface compared to that for
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Figure 18. Streamlines of the unsteady flow around a decelerating sphere (left-hand column) at (a)
t = 5, (b) 20, (c) 40, (d) 100, (e) 200, and (f) 300 for Reto = 150 and ρr = 5 with the corresponding
instantaneous Reynolds numbers (a) Ret = 96.6, (b) 53.8, (c) 31.5, (d) 11.2, (e) 4.04, and (f) 2.12,
respectively; streamlines of the steady flow (right-hand column) at the same Reynolds numbers as
those of the unsteady flow in the left-hand column.

the steady flow at the same Reynolds number as shown in figure 19a–f. Accordingly,
the free-stream deceleration reduces the separation angle θs compared to that for a
steady flow at the same Reynolds number. Note that the separation angle is that
at which the shear stress vanishes at the sphere surface. Figure 18 (also figure 19)
shows that for the steady flow, the location of separation on the sphere surface
moves toward the rear stagnation point with the reduction of Reynolds number.
By contrast, the separation location for the decelerating sphere does not change
significantly.
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Figure 19. Pressure and shear stress coefficients around the decelerating sphere surface at the
same times as those in figure 18, and at steady state at the same Reynolds numbers.

At the time of injecting the sphere into the fluid with the initial parameters described
at the first paragraph of this subsection, there is no flow separation (i.e. θs = 180◦).
This angle decreases rapidly to 121◦ at t = 11 during the initial flow development
around the sphere due to its sudden injection into the fluid. After this transition, the
separation angle increases slowly to 126◦ at t = 104, and then decreases monotonically
to 118◦ at t = 300. Because the separation location (actually the separation circle
around the sphere) is not fixed but moves as a function of time, the fluid particles
flowing in the boundary layer on the sphere surface are constantly trapped in the
recirculation eddy. In addition, it should be noted that as a new wake is generated
behind the decelerating sphere, it moves downstream with a velocity smaller than that
of the wake generated earlier. Therefore, the size of the recirculation eddy grows as
the sphere decelerates. Note that when a sphere experiences a higher deceleration rate
than that of the present study, the location of separation would move more rapidly to
the front stagnation point. This was reported by Chang & Maxey (1995) for constant
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Figure 20. Vorticity contours of the unsteady flow around a decelerating sphere (left-hand column)
at the same times as those in figure 18; vorticity contours of the steady flow (right-hand column) at
the same Reynolds numbers as those of figures in the left-hand column.

MA1 ( = 1 or 2). They performed a numerical simulation for linearly decelerating
flows (constant MA1) past a fixed sphere for 0.1 6 Re 6 20.

It is interesting that the adverse pressure gradient at the sphere surface for the case
of a decelerating sphere occurs even at small Reynolds numbers for which the steady
flow shows no separation (see figure 19e, f). Thus, the recirculation eddy exists at
small Reynolds numbers for the case of a decelerating sphere. A similar phenomenon
has been also reported by Chang & Maxey (1995) where the size of the recirculation
eddy was comparable with the sphere size. It is also seen from figure 18 that the
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steady flow fore-aft symmetry is enhanced as Reynolds number decreases, whereas
the unsteady decelerating flow becomes more asymmetric because the size of the
recirculation eddy grows continuously.

The left-hand column of figure 20(a–f) shows the vorticity contours around the
sphere at the same times (and the same instantaneous Reynolds numbers) as those
in figures 18 and 19. The vorticity used in these figures is normalized by (v/a)
where v is the instantaneous velocity of the sphere. The negative contour values of
the vorticity are −3.2, −1.6, −0.8, −0.4 and −0.2, and the positive values with the
highest magnitude at the sphere surface are 0.8, 0.4 and 0.2. The vorticity associated
with counterclockwise rotation is assumed positive. The right-hand column of figure
20(a–f) shows the vorticity contours at steady state for the same contour values and
at the same Reynolds numbers as those of figures in the left-hand column.

The right-hand column of figure 20(a–f) shows that for the steady flow past
a sphere, the vorticity becomes more uniformly distributed around the sphere as
Reynolds number decreases because of the enhanced role of momentum diffusion
as Reynolds number decreases. On the other hand, the left-hand column figure
of 20(a–f) indicates that as the sphere decelerates, vorticity is being continuously
advected farther downstream even though the instantaneous Reynolds number of the
sphere is becoming smaller. The reason is that the fluid particles are being constantly
trapped in the recirculation eddy, and thus the size of the recirculation eddy grows as
the sphere decelerates as discussed above. At t = 300, the vorticity contour of −0.4 is
divided into two parts, and a centre of vorticity concentration appears downstream.
A similar phenomenon was also reported by Chang & Maxey (1995) at some time
after the free-stream deceleration (from Reynolds number 10 to 1) stops.

Figures 19 displays the pressure and shear stress coefficients around the sphere
surface at the same times (and the same instantaneous Reynolds numbers) as those in
figures 18 and 20 and also shows those at steady state at the same Reynolds numbers.
The pressure coefficient and the shear stress coefficient are defined as 2(p−p∞)/ρv2 and
2τrθ/ρv

2, respectively, where v is the instantaneous velocity of the sphere. Comparing
the decelerating flow with the steady flow at the same Reynolds number, it is seen
that for the decelerating flow: (i) the front stagnation pressure is lower than that
of the steady state, (ii) the angle of inception of the adverse pressure gradient on
the sphere surface is smaller than that for the steady flow, (iii) the rear stagnation
pressure is higher than that for the steady state, and (iv) the shear stress around the
sphere is lower than that for the steady state. These are the reasons why the unsteady
drag for a decelerating sphere is lower than the drag for the steady state at the same
Reynolds number.

4. Conclusion
A new equation for the rectilinear motion of a spherical particle has been proposed.

It includes a modified history term and a drag force due to the initial velocity
difference between the particle and the carrier flow (equation (3.9a)). Comparison
with the numerical solution of the Navier–Stokes equations shows that the new
equation (3.9a) provides a more accurate prediction of the particle motion than any
other equation developed to date over particle Reynolds number in the range of 2 to
150 and particle to fluid density ratio in the range of 5 to 200.

The modified history term in the new equation recovers the Basset history term
for large acceleration number MA1 and recovers the term proposed by MA for low
acceleration number.
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History force Total drag

Time Present equation LB LB Present equation

0.2 0.258 0.264 1.280 94 1.275 60
0.3 0.206 0.212 1.229 21 1.223 25
0.4 0.174 0.181 1.198 41 1.192 03
0.5 0.153 0.160 1.177 41 1.170 73
1 0.100 0.108 1.125 42 1.118 03

10 0.177× 10−1 0.241× 10−1 1.041 16 1.035 49
100 0.125× 10−2 0.215× 10−2 1.019 22 1.018 99
400 0.147× 10−3 0.187× 10−3 1.017 25 1.017 89
600 0.738× 10−4 0.833× 10−4 1.017 15 1.017 81
800 0.447× 10−4 0.469× 10−4 1.017 11 1.017 78
900 0.363× 10−4 0.370× 10−4 1.017 10 1.017 78

1000 0.301× 10−4 0.300× 10−4 1.017 09 1.017 77

Table 2. Comparison of the temporal behaviour of the history force and total drag obtained from
the present equation and those of Lovalenti & Brady (1993, 1995) and Sano (1981) for a sphere
with impulsive start from rest to Re = 0.1. The forces are normalized by the steady Stokes drag
(6πaµU2).

It is found that the steady flow fore-aft symmetry is enhanced as Reynolds number
decreases, whereas the unsteady decelerating flow becomes more asymmetric because
the size of the recirculation eddy grows continuously.
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Appendix. Behaviour of the proposed particle motion equation for low
Reynolds number (Re < 1)

We compare the history force and total drag of our proposed equation with those
of Lovalenti & Brady (1993a, b, 1995) for a sphere with impulsive start from rest
(U1 = 0) to a small Reynolds number (Re = 2aU2/ν = 0.1) for which the expression
of Lovalenti & Brady (1993a, b, 1995) reduces to that of Sano (1981). The comparison
is shown in table 2. The expression of Lovalenti & Brady is denoted as LB. Table 2
shows that the results from the present equation compare favourably with those from
Lovalenti & Brady and Sano. The difference between our results and those of LB is
always less than 1% of the total drag force and asymptotically goes to zero for long
time. As a percentage of the maximum history force, the disagreement never exceeds
3%. The instantaneous percentage disagreement is less than 8% for t 6 1, peaks at
about 42% for t = 100, and then asymptotically diminishes to zero for long time. The
peak in the discrepancy, however, occurs after the history force is truly negligible and
inconsequential.

Now, for the case where U1 > 0, we can make comparisons with both LB and
Lawrence & Mei (1995), denoted as LM, for two parameter cases. These results are
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K(t) Total drag

Time Present equation LB LM Present equation LB LM

(a) 0.100 0.592 0.666 0.85 1.4421 1.5002 1.6141
0.178 0.417 0.481 0.53 1.3255 1.3769 1.4008
0.316 0.288 0.343 0.34 1.2395 1.2849 1.2741
0.562 0.193 0.240 0.25 1.1761 1.2162 1.2141
1.00 0.124 0.164 0.17 1.1301 1.1656 1.1608
1.78 0.759× 10−1 0.108 0.12 1.0981 1.1282 1.1275
3.16 0.440× 10−1 0.679× 10−1 0.7× 10−1 1.0768 1.1015 1.0941
5.62 0.238× 10−1 0.396× 10−1 0.4× 10−1 1.0633 1.0826 1.0741

10.0 0.120× 10−1 0.208× 10−1 0.2× 10−1 1.0555 1.0701 1.0608
17.8 0.561× 10−2 0.927× 10−2 0.1× 10−1 1.0512 1.0624 1.0541
31.6 0.245× 10−2 0.323× 10−2 0.37× 10−2 1.0491 1.0584 1.0499
56.2 0.998× 10−3 0.778× 10−3 0.9× 10−3 1.0481 1.0568 1.0481

100 0.384× 10−3 0.121× 10−3 0.14× 10−3 1.0477 1.0563 1.0476
178 0.141× 10−3 0.198× 10−4 0.21× 10−4 1.0476 1.0563 1.0475
300 0.548× 10−4 0.626× 10−5 0.65× 10−5 1.0475 1.0563 1.0475

1000 0.574× 10−5 0.563× 10−6 0.56× 10−6 1.0475 1.0563 1.0475

(b) 0.316 0.347 0.596 0.5 1.2009 1.3067 1.2315
0.562 0.204 0.379 0.38 1.1723 1.2633 1.2075
1.00 0.112 0.227 0.21 1.1539 1.2329 1.1735
1.78 0.575× 10−1 0.125 0.13 1.1430 1.2125 1.1575
3.16 0.274× 10−1 0.611× 10−1 0.6× 10−1 1.1370 1.1997 1.1435
5.62 0.121× 10−1 0.252× 10−1 0.27× 10−1 1.1339 1.1925 1.1369

10.0 0.502× 10−2 0.843× 10−2 0.85× 10−2 1.1325 1.1892 1.1332
17.8 0.196× 10−2 0.229× 10−2 0.27× 10−2 1.1319 1.1880 1.1320
31.6 0.728× 10−3 0.599× 10−3 0.61× 10−3 1.1316 1.1876 1.1316
56.2 0.259× 10−3 0.178× 10−3 0.18× 10−3 1.1316 1.1875 1.1315

100 0.895× 10−4 0.563× 10−4 0.50× 10−4 1.1315 1.1875 1.1315
178 0.301× 10−4 0.178× 10−4 0.16× 10−4 1.1315 1.1875 1.1315
300 0.111× 10−4 0.625× 10−5 0.50× 10−5 1.1315 1.1875 1.1315

1000 0.106× 10−5 0.561× 10−6 0.40× 10−6 1.1315 1.1875 1.1315

Table 3. Comparison of the temporal behaviour of the history force and total drag obtained from
the present equation and those of Lovalenti & Brady (1993, 1995) and Lawrence & Mei (1995) for
a sphere making a step change of its velocity at t = 0 (a) from Re1 = 0.1 to Re2 = 0.3 and (b) from
Re1 = 0.8 to Re2 = 1.0. K(t) is listed. The history force normalized by the steady Stokes drag equals
the product of K(t) and (1−U1/U2).

shown in table 3. The comparison with LB is not as good here as it was with the
U1 = 0 cases. However, the LB and LM comparisons were not totally satisfactory
either. Our results for the history force differ from the LM results by as much as
30% of the maximum value of the history force. The LB results are generally closer
to the LM results but do differ by as much as 22% of the maximum history force.
Our maximum disagreement however is about 10% of the total drag force for the
case of Re1 = 0.1 and Re2 = 0.3 and is about 2% of the total drag force for the case
of Re1 = 0.8 and Re2 = 1.

In summary, while there is some disagreement with the theories (outside the
designed range for our equation), it is not a significant factor in the total drag
force.
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